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Abstract

In this investigation we address the problem of adjoint-based optimization of PDE systems in moving domains. As an
example we consider the one-dimensional heat equation with prescribed boundary temperatures and heat fluxes. We dis-
cuss two methods of deriving an adjoint system necessary to obtain a gradient of a cost functional. In the first approach we
derive the adjoint system after mapping the problem to a fixed domain, whereas in the second approach we derive the
adjoint directly in the moving domain by employing methods of the noncylindrical calculus. We show that the operations
of transforming the system from a variable to a fixed domain and deriving the adjoint do not commute and that, while the
gradient information contained in both systems is the same, the second approach results in an adjoint problem with a sim-
pler structure which is therefore easier to implement numerically. This approach is then used to solve a moving boundary
optimization problem for our model system.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this investigation we are interested in the computational solution of optimal control problems for a class
of partial differential equations defined in variable domains. In such cases the shape of the domain is itself
unknown and must be determined as a part of the solution of the direct (forward) problem. Applications
of such problems are manifold and mostly include modeling and control of systems involving change of phase,
such as solidification [1], and data assimilation for problems involving a free surface, such as the shallow water
models in atmospheric and oceanic sciences [2]. Our own investigation is motivated by the problem of opti-
mization of advanced welding processes in automotive manufacturing. Thus, generally speaking, we are inter-
ested in PDE-constrained optimization problems
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min
u;/

jðu;/Þ;

subject to Gðu;/Þ ¼ 0;
ð1Þ
where u and / are, respectively, the state of the system and the control, jðu; /Þ is the cost functional and
Gðu; /Þ ¼ 0 represents the PDE constraint. Noting that, subject to certain assumptions on G, we have
u ¼ uð/Þ, one usually rewrites (1) in an equivalent unconstrained formulation using the reduced cost func-
tional J ð/Þ , jðuð/Þ;/Þ (‘‘ , ” means equality by definition) as
min
/

J ð/Þ: ð2Þ
In our presentation hereafter we will skip the adjective ‘‘reduced”. Problem (2) can be solved using any of
gradient-based approaches, such as the conjugate gradient method, or a variant of the quasi-Newton ap-
proach [3]. A central ingredient of any such technique is computation of the gradient rJ of the cost func-
tional with respect to the control variable /. For problems involving optimization of PDE systems such a
gradient can be conveniently obtained in terms of the solution of a suitably defined adjoint system [4], which
ensures that this gradient respects the PDE constraints. This adjoint-based approach has lead to many success-
ful applications of optimal control to problems governed by PDEs in meteorological data assimilation [5], flow
control [6] and mixing [7], to mention just a few areas. However, when dealing with PDE problems defined in
moving domains, one needs to address several issues which do not arise in fixed-domain problems. First of all,
this domain variability must be properly accounted for in the derivation of the linear perturbation equation,
the so-called ‘‘tangent linear model”, based on which the adjoint system is subsequently defined. Secondly, the
domain variability must also be accounted for in the definition of the inner product defining the adjoint.
Depending on how the variable domain is described mathematically, one can distinguish two general cases
[8]. Denoting a time-dependent domain XðtÞ and its boundary oXðtÞ, where XðtÞ � Rd and d is the spatial
dimension, an implicitly defined domain is characterized by the condition 8x2oXðtÞ F ðxÞ ¼ f0 for a function
F : Rd ! R and a constant f0 2 R. Thus, the domain boundary is an isocontour of the function F. This
formulation is natural, for instance, in problems involving a change of phase. On the other hand, explicitly

defined domains are characterized by the condition 8x2oXðtÞ _x ¼ gðt; uÞ, where u is a vector of the dependent
variables in the problem and gðt; uÞ is a function describing the velocity of the domain boundary. This
formulation is more natural in free-surface problems. Given an implicitly defined domain, it is usually possible
to construct the corresponding explicit definition using the implicit function theorem. In this investigation we
will focus on optimization of PDEs in implicitly defined variable domains; the companion problem concerning
explicitly defined domains is left for the future.

The optimization problem becomes particularly interesting when the cost functional J ð/Þ is expressed in
terms of the evolution of the domain boundaries. This may correspond, for example, to the situation when a part
of the domain boundary should follow a prescribed trajectory. This problem is closely related to the shape opti-
mization problem [9], where certain mathematical techniques we will use originated. As a matter of fact, the
problem of optimizing the temporal evolution of a domain XðtÞ � Rd , where t 2 ½0; T �, can be equivalently
regarded as the problem of optimizing the shape of a ‘‘tube” [t2½0;T �ftg � XðtÞ embedded in an extended time–
space domain ½0; T � � Rd . However, the approach we will discuss below is preferable from the computational
point of view, as it avoids the use of the boundary curvature defined with respect to the time–space coordinates.

Adjoint-based optimization of PDE systems in variable domains has received only limited attention in the
literature. Control of a free-surface problem with the domain defined explicitly was considered in [2,10]. Con-
trol of a Stefan problem similar to the problem addressed here was investigated in [11], but using less general
methods than the approach discussed in the present study. Adjoint-based methods were also used for optimal
control of solidification fronts by Zabaras (see [12] for a review). These investigations, however, applied the
equation for the domain evolution as a ‘‘soft” constraint only, i.e., it was not enforced exactly as an equality
constraint, but its violations were instead penalized in the cost functional. Consequently, calculation of the
cost functional gradient did not differ much from the case involving a fixed domain. Yet another approach
was adopted by Hinze and Ziegenbalg in [13,14] who applied adjoint-based optimization to a two-phase Ste-
fan problem with the interface parametrized as a graph of a function. Recently, there has also been some inter-
est in the use of level set methods for shape and topology optimization [15]. In our investigation we are
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interested in a problem where the control has the form of the Neumann boundary condition on a part of the
boundary. The mathematical theory for the particular case with the velocity of the boundary serving as the
control variable was presented in a recent monograph [16]. In our present investigation we will employ ele-
ments of this theory.

Our goal in this study is to assess, from the computational viewpoint, two methods of calculating the cost
functional gradient rJ in the presence of a PDE constraint in a variable domain. In the first approach we use
a suitable mapping to transform the system from a moving to a fixed domain in which it is then optimized. We
will show that the adjoint system obtained in this way has a rather awkward structure characterized by the
presence of integral constraints. In the second approach we use the methods of the noncylindrical calculus
[16] in order to differentiate the original PDE system with respect to evolution of the domain. We will observe
that the adjoint system obtained in this way will have a simpler structure while still containing the same gra-
dient information. Feasibility of this approach will be confirmed with computations concerning our model
problem. For the sake of simplicity and in order to emphasize the generic, discretization-independent, char-
acter of problem addressed here, we will follow the ‘‘differentiate-then-discretize” approach [4] in which an
expression for the gradient can be obtained using the infinite-dimensional PDE formulation which has to
be subsequently discretized.

The structure of the paper is as follows: in the next Section we introduce the one-dimensional (1D) model
optimization problem that will serve as our example, in Section 3 we derive an expression for the cost func-
tional gradient using a mapping to a fixed domain, an approach to gradient calculation in a variable domain
employing the noncylindrical calculus is presented in Section 4, whereas in Section 5 we compare the two
approaches, then computational examples are presented in Section 6, while conclusions and outlook are
deferred to Section 7.

2. Statement of the model problem

Here we introduce our PDE-constrained optimization problem. The governing system has the form of a 1D
heat equation defined on a variable domain XðtÞ , ½aðtÞ; bðtÞ� � R
ou
ot
� m

o2u
ox2
¼ 0 in ð0; T � � ½aðtÞ; bðtÞ�; ð3aÞ

ou
ox

����
aðtÞ
¼ /ðtÞ; ou

ox

����
bðtÞ
¼ w in ð0; T �; ð3bÞ

ujaðtÞ ¼ ujbðtÞ ¼ ub in ð0; T �; ð3cÞ
ujt¼0 ¼ u0 in ½að0Þ; bð0Þ�; ð3dÞ
where m 2 Rþ is the diffusion coefficient (Rþ does not include 0), w; ub 2 R represent the Neumann and Dirich-
let boundary data and u0 : Xð0Þ ! R is the initial condition. We will assume that w 6¼ 0 and aðtÞ < bðtÞ for all
times t P 0. The function / : ½0; T � ! Rþ in Neumann boundary condition (3b) is our control. We note that,
comparing to the heat equation in a fixed domain, system (3) has more boundary conditions. The reason is
that two additional relations are needed to determine the evolution of the domain given by aðtÞ and bðtÞ. This
is done by invoking the implicit function theorem in order to differentiate conditions (3c)
du
dt

����
aðtÞ
¼ ou

ot
þ ou

ox
da
dt
¼ dub

dt

�����
aðtÞ

¼ 0 ) V a ,
da
dt
¼ �

ou
ot
ou
ox

�����
aðtÞ

ð4Þ
and likewise for V b ,
db
dt. Relation (4) is well-defined owing to the assumptions made on the Neumann data in

(3b). In the context of the heat transfer problems, conditions (3b) represent the heat flux across the boundary,
whereas conditions (3c) mean that the temperature at the boundary oXðtÞ is constant and equal to ub (e.g., the
phase change temperature). Thus, system (3) may be regarded as a modified form of the one-phase Stefan
problem [17] (the actual Stefan problem is characterized by somewhat different heat flux conditions). Finally,
we emphasize that, even though Eq. (3a) alone is formally linear, moving domain problem (3) is in fact
nonlinear.
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As regards the choice of the cost functional, we are interested in expressions depending on the evolution of
the domain and will use
J ð/Þ ¼ 1

2

Z T

0

½bðt; /Þ � �bðtÞ�2 dt; ð5Þ
where �bðtÞ represents the desired trajectory of the right boundary bðtÞ. Cost functional (5) can be supple-
mented with a Tikhonov-type penalty term, as required for regularization [18]. Thus, our optimization prob-
lem consists in finding the Neumann boundary condition / at the left boundary, so that the trajectory of the
opposite boundary follows a prescribed path. We conclude by saying that, given the diffusive nature of Eq.
(3a), this is a strongly ill-posed inverse problem. A quantitative characterization of ill-posedness of this prob-
lem could be done by examining the singular value decomposition (SVD) of the Hessian of cost functional (5)
[19]. This would, however, require the computation of the second-order differentials of (5) which is outside the
scope of the present paper.

A local minimizer /̂ of our problem is characterized by the first-order optimality conditions which imply
the vanishing of the Gâteaux differential, defined as J 0ð/; /0Þ , lim�!0

1
�
½J ð/þ �/0Þ � J ð/Þ�, of (5)
8/0 J 0ð/̂; /0Þ ¼ 0; ð6Þ
where /0 is an arbitrary perturbation of the control. The local minimizer /̂ can be found using an iterative
descent algorithm
/ðnþ1Þ ¼ /ðnÞ þ BðrJ ð/ðnÞÞÞ; n ¼ 1; . . . ;

/ð1Þ ¼ /0;
ð7Þ
where n is the iteration count and /0 is the initial guess for the control variable. Representation (7) is generic
and specific algorithms, such as, e.g., the steepest descent, conjugate gradients, or Newton’s method, can be
obtained by making an appropriate choice of the operator B [3]. The cost functional gradient rJ ð/Þ is ex-
tracted from the Gâteaux differential J 0ð/; /0Þ using the Riesz theorem
ðrJ ;/0ÞX ¼ J 0ð/; /0Þ; ð8Þ

where ð�; �ÞX is the inner product in the Hilbert space X .

3. Gradient via mapping to a fixed domain

In this Section we present an approach to computing the gradient rJ of cost functional (5) based on a
transformation of problem (3) to a fixed domain (Fig. 1). In the original system (3) the domain XðtÞ is char-
acterized by the positions of its two endpoints aðtÞ and bðtÞ. In order to simplify the resulting expressions, we
will use instead the variables
Ω∼Ω( )t

t

T

ξ

a(t) b(t)

t

T

x 1
0 0

−1

W(t)

Fig. 1. Schematic transformation W ¼ W ðtÞ of the moving domain XðtÞ to the fixed domain eX.
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LðtÞ , bðtÞ � aðtÞ; ð9aÞ

x0ðtÞ ,
aðtÞ þ bðtÞ

2
; ð9bÞ
i.e., the domain width and the position of the domain centerpoint. Introducing the coordinate n 2 eX , ½�1; 1�,
the transformation from XðtÞ to the fixed domain eX is defined by the change of variables

x ¼ xðt; nÞ ¼ LðtÞ
2

nþ x0ðtÞ and ~uðt; nÞ , uðt; xðt; nÞÞ. Noting that the differential operators transform as

ou
ox ¼ o~u

on
2
L, o2u

ox2 ¼ o2~u
on2

4
L2, and ou

ot

��
x
¼ o~u

ot

��
nðt;xÞ þ

o~u
on

���
t

dn
dt, the transformation of system (3) to the fixed domain eX yields
o~u
ot
� o~u

on
2 _x0 þ n _L

L
� 4m

L2

o
2~u

on2
¼ 0 in ð0; T � � ½�1; 1�; ð10aÞ

o~u
on

����
�1

¼ L
2

/;
o~u
on
j1 ¼

L
2

w in ð0; T �; ð10bÞ

~uj�1 ¼ ~uj1 ¼ ub in ð0; T �; ð10cÞ
~ujt¼0 ¼ ~u0 in ½�1; 1�; ð10dÞ
where the dot denotes differentiation with respect to the time. Cost functional (5) becomes
J ð/Þ ¼ 1

2

Z T

0

x0ðtÞ þ
LðtÞ

2
� �bðtÞ

� �2

dt: ð11Þ
The Gâteaux differential of cost functional (11) obtained applying the definition formula is given by
J 0ð/; /0Þ ¼
Z T

0

x0 þ
L
2
� �b

� �
x00 þ

L0

2

� �
dt; ð12Þ
where x00 ¼ x00ð/; /0Þ and L0 ¼ L0ð/; /0Þ are the perturbation variables which, together with the perturbation
variable ~u0 ¼ ~u0ð/; /0Þ, are the solutions of the perturbation system
o~u0

ot
� o~u0

on
2 _x0 þ n _L

L
� o~u

on
ð2 _x00 þ n _L0ÞL� ð2 _x0 þ n _LÞL0

L2
� 4m

L2

o2~u0

on2
þ L0

8m

L3

o2~u

on2
¼ 0 in ð0; T � � ½�1; 1�; ð13aÞ

o~u0

on

����
�1

� L0

2
/ ¼ L

2
/0;

o~u
on
j1 �

L0

2
w ¼ 0 in ð0; T �; ð13bÞ

~u0j�1 ¼ ~u0j1 ¼ 0 in ð0; T �; ð13cÞ
~u0jt¼0 ¼ 0 in ½�1; 1�; ð13dÞ
x00jt¼0 ¼ 0; L0jt¼0 ¼ 0: ð13eÞ
This perturbation system is obtained by replacing / in (10) with /þ �/0 and representing the solutions of (10) as

~uð/þ �/0Þ ¼ ~uð/Þ þ �~u0ð/; /0Þ þOð�2Þ;
Lð/þ �/0Þ ¼ Lð/Þ þ �L0ð/; /0Þ þOð�2Þ;
x0ð/þ �/0Þ ¼ x0ð/Þ þ �x00ð/; /0Þ þOð�2Þ:
The resulting system is then linearized and simplified using (10). In expression (12) for the Gâteaux differential
the perturbation /0 appears implicitly in the state perturbation variables L0 ¼ L0ð/; /0Þ and x00 ¼ x00ð/; /0Þ,
hence at this stage we cannot use (8) to extract the cost functional gradient directly from (12). This will, how-
ever, become possible after (12) is transformed using suitably defined adjoint variables.

We begin by introducing the adjoint variables ~u� : ½0; T � � eX ! R, ~a� : ½0; T � ! R and ~b� : ½0; T � ! R.
Then we multiply (13a) by ~u� and integrate over time and space, multiply (13b) by ~a� and �~b� and integrate
over time, and add all the terms together which gives
I1 ¼
Z T

0

Z 1

�1

o~u0

ot
� o~u0

on
2 _x0 þ n _L

L
� o~u

on
ð2 _x00 þ n _L0ÞL� ð2 _x0 þ n _LÞL0

L2

�
� 4m

L2

o2~u0

on2
þ L0

8m

L3

o2~u

on2

�
~u�dndt

þ
Z T

0

o~u0

on
j�1 �

L0

2
/� L

2
/0

� �
~a�dt �

Z T

0

o~u
on
j1 �

L0

2
w

� �
~b�dt ¼ 0: ð14Þ
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Performing integration by parts with respect to t and n, and using (13c) we obtain
I1 ¼
Z T

0

Z 1

�1

~u0 � o~u�

ot
þ

_L
L

~u� þ o~u�

on
2 _x0 þ n _L

L
� 4m

L2

o2~u�

on2

� �
dndt þ

Z 1

�1

~u0~u�jt¼T
t¼0 dn

�
Z T

0

o~u
on

����
1

4m

L2
~u�

� ����
1

þ ~b�
�
� o~u

on

����
�1

4m

L2
~u�j�1 þ ~a�

� �
dt

þ
Z T

0

L0
Z 1

�1

d

dt
n
L

o~u
on

~u�
� �

þ 2 _x0 þ n _L

L2

o~u
on

~u� þ 8m

L3

o
2~u

on2
~u�

� �
dn� /

2
~a� þ w

2
~b�

� �
dt

þ
Z T

0

x00

Z 1

�1

d

dt
2

L
o~u
on

~u�
� �

dn

� �
dt þ

Z T

0

L
2

~a�/0 dt � L0

L

Z 1

�1

n
L

o~u
on

~u� dn

� �t¼T

t¼0

� 2x00
L

Z 1

�1

o~u
on

~u� dn

� �t¼T

t¼0

:

ð15Þ
Defining now the adjoint system as follows:
� o~u�

ot
þ

_L
L

~u� þ o~u�

on
2 _x0 þ n _L

L
� 4m

L2

o2~u�

on2
¼ 0 in ð0; T � � ½�1; 1�; ð16aÞ

~u�j�1 ¼ �
L2

4m
~a�; ~u�j1 ¼ �

L2

4m
~b� in ð0; T �; ð16bÞZ 1

�1

d

dt
n
L

o~u
on

~u�
� �

þ 2 _x0 þ n _L

L2

o~u
on

~u� þ 8m

L3

o2~u

on2
~u�

� �
dn� /

2
~a� þ w

2
~b� ¼ 1

2
x0 þ

L
2
� �b

� �
in ð0; T �; ð16cÞZ 1

�1

d

dt
2

L
o~u
on

~u�
� �

dn ¼ x0 þ
L
2
� �b in ð0; T �; ð16dÞ

~u�jt¼T ¼ 0 in ½�1; 1�; ð16eÞ
~a�jt¼T ¼ 0; ~b�jt¼T ¼ 0 ð16fÞ
and using (13d) and (13e) reduces (15) to
Z T

0

L
2

~a�/0 dt ¼
Z T

0

x0 þ
L
2
� �b

� �
x00 þ

L0

2

� �
dt ¼ J 0ð/; /0Þ; ð17Þ
from which we can extract the L2 cost functional gradient as
rJ ¼ L
2

~a� in ½0; T �: ð18Þ
We conclude this Section by commenting on the structure of adjoint system (16). We note that, in addition to
satisfying evolution equation (16a), the adjoint variable ~u� also has to satisfy two evolutionary integral con-
straints (16c) and (16d). These constraints can be accommodated by adjusting the adjoint variables ~a� and ~b�

in boundary conditions (16b). However, the presence of these nonlocal integral constrains can severely com-
plicate numerical treatment of problem (16). These difficulties will likely be aggravated further for problems
formulated in higher spatial dimensions.

4. Gradient via noncylindrical calculus

In this Section we derive an expression for the gradient of cost functional (5) which will directly account for
the variability of the domain in which the PDE constraint (3) is defined. Differentiation of solutions of PDEs
defined in variable domains is made possible by the use of the ‘‘noncylindrical calculus” [16] whose main
results are reviewed below, while the reader is referred to the original source for further details. Regarding
X0 , Xð0Þ as a reference domain, we introduce the flowmap T ¼ T ðtÞ to parametrize the evolution of the
domain as XðtÞ ¼ T ðtÞX0. We can now define a noncylindrical set (a ‘‘tube”) as
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Q , [t2½0;T �ftg � XðtÞ ð19Þ
which represent the evolution of the domain XðtÞ in the space–time ‘‘coordinates”. The appellation ‘‘noncy-
lindrical” refers to the fact that in such coordinates Q forms a distorted tube, rather than a straight cylinder
(Fig. 1, left vs. right schematic). In the present case the domain evolution clearly depends on the control /,
hence Q ¼ Qð/Þ. Furthermore, as is evident from the structure of system (3), one may not in general perturb
the solution u by perturbing the control / without modifying the shape of the tube Q. Consequently, every
dependent variable depends on the control variable / through the domain evolution Qð/Þ, i.e., u ¼
uðQð/ÞÞ, a ¼ aðQð/ÞÞ and b ¼ bðQð/ÞÞ. This fact has important consequences for how differentials of the state
variables are calculated with respect to the control /: by the chain rule, differentiation is performed first with
respect to the evolution Q of the domain which is in turn differentiated with respect to the control /. This can
be represented schematically as
DuðQð/ÞÞ
D/

� /0 ¼ DuðQð/ÞÞ
DQ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

\outer"differential

� DQð/Þ
D/

� /0
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

\inner"differential

; ð20Þ
where D
D/ corresponds to a Gâteaux or Fréchet differential with respect to / and �X means that the differential

is calculated in the direction X. Computation of the outer differential requires the use of the noncylindrical
calculus [16] which provides the framework for differentiation of solutions of PDEs with respect to domain
evolution. The central ansatz here is that the domain evolution Q can be parametrized using a velocity field
V defined on a larger (‘‘hold-all”) domain D � R, such that V joD ¼ 0 and XðtÞ � D, and differentiation is then
carried out with respect to this velocity field. A differential with respect to domain evolution parametrized by
V is calculated in the direction W which, as the ‘‘inner” differential in (20), is in turn expressed as a differential
of V with respect to / computed in the direction /0. We emphasize that the differentials of the state variables
are characterized by a PDE system obtained via linearization of system (3). Since our model problem is for-
mulated in a 1D domain, many of the following results could be reduced to a more explicit form, however, we
choose to state them in a more generic form admitting a straightforward generalization to problems in higher
dimensions.

Domain evolution is parametrized using the velocity (speed) method [16] which associates a velocity field V

to the flowmap T , so that
oT ðt;xÞ
ot ¼ V ðt; T ðt; xÞÞ; t 2 ð0; T �;

T ð0; xÞ ¼ x; in Xð0Þ:

(
ð21Þ
Thus, the evolution of a domain XðtÞ can be regarded as driven by the velocity field V, i.e., X ¼ XðV Þ.
We can now introduce the transverse map eT
eT : XðtÞ ! Xðt; qÞ , XðV þ qW Þ; ð22Þ

which represents modifications of a domain evolution XðtÞ due to the perturbation qW applied to the velocity
field V. It can be shown [16] that the flow associated with a transverse map (22) is given in terms of a transverse

velocity field eZðt; qÞ as
deT ðt;qÞ
dq ¼ eZðt; qÞ; q > 0eT ðt; 0Þ ¼ x; in XðtÞ:

8<: ð23Þ
Derivatives with respect to the pseudo-time q will be needed at q ¼ 0 only, hence we can define Z , eZ jq¼0. It is
known [16] that evolution in time of the transverse velocity field Z is governed by the following initial-value
problem
oZ
ot þ ½Z; V � ¼ W in ð0; T � � D;

Zjt¼0 ¼ 0 in D;

(
ð24Þ
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where ½Z; V � , oZ
ox V � oV

ox Z denotes the Lie bracket of the pair ðZ; V Þ and, for convenience, the transverse field
Z is defined in the hold-all domain D. Transverse system (24) describes how the domain evolution is perturbed
if the velocity V is perturbed in the direction W. The velocity fields V and W, as well as system (24), are defined
at every point in D, however, from the governing system one can usually obtain explicitly the value of V at the
boundary oXðtÞ only [cf. (4)]. Then the field V in the interior of the domain XðtÞ can be reconstructed as an
extension of its boundary values (‘‘traces”), i.e., as V ¼ ExtðV a; V bÞ, so that V a ¼ V ja and V b ¼ V jb. Likewise,
the perturbation field W can be obtained as an extension of the boundary values of the differential of V, i.e.,
W ¼ ExtðW a;W bÞ. The fact that the extension fields are not explicitly, or even uniquely, defined is not a prob-
lem, since in the subsequent developments we will only need a trace of system (24) on the domain boundary.
Now our goal is to determine how functions defined on moving domains can be differentiated with respect to
the domain evolution thus parametrized by V. This is addressed by the following two definitions:

Definition 1. Given a function f q : q! f ðV þ qW Þ � eT ðt; qÞ, where � denotes a composition of maps, the
noncylindrical (‘‘tube”) material derivative _f ðV ; W Þ of f ðV Þ at V and in the direction W is given by
_f ðV ; W Þ , d

dq
f qjq¼0: ð25Þ
Definition 2. The noncylindrical (‘‘tube”) shape derivative f 0ðV ; W Þ of f ðV Þ calculated at V and in the direc-
tion W is given by
f 0ðV ; W Þ , _f ðV ; W Þ � of
ox
ðV ÞZ: ð26Þ
We thus have two types of the noncylindrical (tube) derivative: the material and the shape derivative (denoted
with a dot and an apostrophe, respectively). One usually starts by computing the former using (25) and then
obtains the latter using transformation (26). We are now in the position to calculate the complete Fréchet dif-
ferential of a state variable in our problem, for instance, the quantity u ¼ uðV ð/ÞÞ. In accordance with scheme
(20) and using formulas (25) and (26) we obtain
u0ðV ð/Þ; /0Þ ¼ _uðV ð/Þ; /0Þ � ou
ox
ðV ð/ÞÞZ ¼ d

d�
uðV ð/þ �/0ÞÞ½ ��¼0 �

ou
ox
ðV ð/ÞÞZ

¼ _u
d

d�
V ð/þ �/0Þ

� �� �
�¼0

� ou
ox
ðV ð/ÞÞZ ¼ _uðV ð/Þ; V 0ð/; /0ÞÞ � ou

ox
ðV ð/ÞÞZ: ð27Þ
The functions _uðV ð/Þ; W Þ and u0ðV ð/Þ; W Þ represent, respectively, the material and shape Fréchet differentials
of uðV ð/ÞÞ computed in the direction W which, by the chain rule, is in turn given by the Fréchet differential of
the velocity field V with respect to the control /, i.e., W ¼ V 0ð/; /0Þ. Each of the material and shape differen-
tials appearing in (27) satisfies a PDE together with appropriate initial and boundary conditions. We remark
that for our further developments it is more convenient to use the equations for the shape, rather than the
material, differentials. The reason is that equations for shape differentials, as well as their adjoints, have struc-
ture more similar to the original governing equations than equation for material differentials do. This can be
quite important from the implementation point of view, as it simplifies development of the code for the adjoint
problem based on an existing code for the governing system. We can now proceed to calculate the differential
of the cost functional and derive equations for perturbations of the dependent (state) variables.

We begin by calculating the Gâteaux differential of functional (5). This functional depends on the control /
through the shape of the tube Q only, so that in view of the above discussion it can be rewritten as
J ð/Þ ¼ J ðV ð/ÞÞ: ð28Þ

Now using the chain rule, the Gâteaux differential of J ð/Þ can be expressed as
J 0ð/; /0Þ ¼ d

d�
J ðV ð/þ �/0ÞÞ

 �

�¼0
¼ J 0ðV ð/Þ; d

d�
V ð/þ �/0Þj�¼0Þ ¼ J 0ðV ð/Þ; V 0ð/; /0ÞÞ; ð29Þ
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where J 0ðV ; W Þ is the noncylindrical differential of J ðV Þ with respect to domain evolution evaluated in the
direction W ¼ V 0ð/; /0Þ. The differential J 0ðV ; W Þ can be calculated as follows:
J 0ðV ;W Þ ¼ d

dq
1

2

Z T

0

½bðV þ qW Þ � �b�2 dt
���
q¼0
¼
Z T

0

½bðV Þ � �b�Z dt; ð30Þ
where, in view of (23), we used d
dq bðV þ qW Þjq¼0 ¼ d

dq T ðV þ qW Þjq¼0 ¼ Z and Z ¼ ZðV ; W Þ satisfies system
(24). The field W appearing on the right-hand size (RHS) in (24) is obtained as W ¼ ExtðW a;W bÞ, where,
by (26),
W a ¼ V 0ð/; /0Þja ¼ _V ð/; /0Þja �
oV
ox

����
a

Zja; ð31aÞ

W b ¼ V 0ð/; /0Þjb ¼ _V ð/; /0Þjb �
oV
ox

����
b

Zjb: ð31bÞ
Using (4) and carrying out the differentiation we obtain
_V ð/; /0Þ
��
a
¼ d

d�
V að/þ �/0Þj�¼0 ¼ �

ou0

ot þ V a
ou0

ox þ Z o
ox

ou
ot þ V a

ou
ox

� 

ou
ox

¼ �
du0

dt þ Z o
ox

du
dt

� 

ou
ox

; ð32Þ
where all the partial derivatives are evaluated at x ¼ aðtÞ and _V jb can be calculated in an analogous manner.
Employing the methods of the noncylindrical calculus outlined above and described in detail in [16] we

obtain the perturbation system characterizing the shape differential u0ðV ð/Þ; /0Þ as follows:
ou0

ot � m o2u0

ox2 ¼ 0 in ð0; T � � ½aðtÞ; bðtÞ�; ð33aÞ
ou0

ox jaðtÞ ¼ � o2u
ox2 jaðtÞZjaðtÞ þ /0

ou0

ox jbðtÞ ¼ � o2u
ox2 jbðtÞZjbðtÞ

in ð0; T �; ð33bÞ

dZ
dt ¼ oZ

ot þ oZ
ox V ¼ W þ oV

ox Z ¼ _V ð/; /0Þ in ð0; T � � D; ð33cÞ
u0jt¼0 ¼ 0 in ½að0Þ; bð0Þ�; ð33dÞ
Zjt¼0 ¼ 0 in D; ð33eÞ
where we simplified transverse Eq. (24), so that its RHS can now be expressed in terms of (32) as
_V ¼ Extð _V a; _V bÞ. We remark that such simplification of (24) may not be possible in higher spatial dimensions.
At this stage we still cannot use (8) to extract the cost functional gradient rJ from (30), because the control
perturbation /0 is not factored out, but is instead buried in perturbation system (33). This will, however, be-
come possible after (30) is transformed using suitably defined adjoint variables.

We begin by introducing the adjoint variables u� : Q! R and Z� : ½0; T � � D! R. We then multiply (33a)
by u� and integrate over the tube Q, multiply (33c) by Z� and integrate over ½0; T � � D, and add the two expres-
sions together
I2 ¼
Z T

0

Z bðtÞ

aðtÞ

ou0

ot
� m

o2u0

ox2

� �
u� dxdt þ

Z T

0

Z
D

dZ
dt
� _V

� �
Z� dxdt ¼ 0: ð34Þ
As regards the adjoint transverse field Z�, we will assume for it the following representation Z� ¼ c�a;bðNf�Þ,
where c�a;b is the adjoint of the trace operator ca;b [16], N ¼ 1 for x ¼ b and N ¼ �1 for x ¼ a. The trace oper-
ator ca;b assigns to every function defined on the domain X its boundary values at a and b, i.e., for f : X! R

we have ca;bðf Þ ¼ ff ja; f jbg. The adjoint variable f� is therefore supported at x ¼ aðtÞ and x ¼ bðtÞ only (de-
noted f�a and f�b, respectively). As a result, the second term in (34) simplifies as follows:
Z T

0

Z
D

dZ
dt
� _V

� �
Z� dxdt ¼

Z T

0

Z
D

dZ
dt
� _V

� �
c�a;bðNf�Þdxdt ¼

Z T

0

Z
D

ca;b
dZ
dt
� _V

� �
Nf� dxdt

¼
Z T

0

dZ
dt
� _V

� �
f�

� �x¼bðtÞ

x¼aðtÞ
dt: ð35Þ
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Using (34), (35) and (32), performing integration by parts with respect to t and x, and then using (33b) we
obtain
I2 ¼
Z T

0

Z bðtÞ

aðtÞ
u0

ou�

ot
� m

o2u�

ox2

� �
dxdt þ

Z bðtÞ

aðtÞ
u0u� dx

" #t¼T

t¼0

�
Z T

0

u0 u�V � m
ou�

ox
þ d

dt
f�

ou
ox

 !" #( )�����
bðtÞ

aðtÞ

dt þ
Z T

0

mu�jaðtÞ/
0 dt

�
Z T

0

Z
df�

dt
� m

o
2u

ox2
u� �

o
ox

du
dt

� 

ou
ox

f�
 !" #bðtÞ

aðtÞ

dt þ Z � u0
ou
ox

 !
f�

" #bðtÞ

aðtÞ

������
t¼T

t¼0

: ð36Þ
We remark that, since XðtÞ is time-dependent, when integrating by parts with respect to time the first term in
(34) we had to use the Reynolds transport theorem
Z bðtÞ

aðtÞ

og
ot

dx ¼ d

dt

Z bðtÞ

aðtÞ
g dx� ½gV �bðtÞaðtÞ;
where g : Q! R is an arbitrary function. Defining now the adjoint system as follows:
� ou�

ot
� m

o2u�

ox2
¼ 0 in ð0; T � � ½aðtÞ; bðtÞ�; ð37aÞ

u�jaðtÞV a � m ou�

ox jaðtÞ ¼ � d
dt

f�a
ou
oxjaðtÞ

� �
u�jbðtÞV b � m ou�

ox jbðtÞ ¼ � d
dt

f�b
ou
oxjbðtÞ

� � in ð0; T �; ð37bÞ

df�a
dt
� f�a

o
ox

du
dt

� 

ou
ox

�����
aðtÞ

¼ m
o

2u
ox2

����
aðtÞ

u�jaðtÞ in ð0; T �; ð37cÞ

df�b
dt
� f�b

o
ox

du
dt

� 

ou
ox

�����
bðtÞ

¼ m
o

2u
ox2

����
bðtÞ

u�jbðtÞ þ ½bð/Þ � �b� in ð0; T �; ð37dÞ

u�jt¼T ¼ 0 in ½að0Þ; bð0Þ�; ð37eÞ
f�ajt¼T ¼ f�bjt¼T ¼ 0 ð37fÞ
and using (33d) and (33e) reduces (36) to
Z T

0

mu�jaðtÞ/
0 dt ¼

Z T

0

½bð/Þ � �b�Z dt ¼ J 0ð/; /0Þ; ð38Þ
from which we can extract the L2 cost functional gradient as
rJ ¼ mu�jaðtÞ in ½0; T �: ð39Þ

We notice that the left-hand sides of adjoint transverse equations (37c) and (37d) are, up to the factors, respec-
tively, � ou

ox ja and � ou
ox jb, equal to the expressions on the RHS in boundary conditions (37b). Therefore, bound-

ary conditions (37b) can be combined with Eqs. (3a), (37c) and (37d) to entirely eliminate the adjoint
transverse variables f�a and f�b, so that adjoint system (37) can take a simpler form
� ou�

ot
� m

o2u�

ox2
¼ 0 in ð0; T � � ½aðtÞ; bðtÞ�; ð40aÞ

m
ou�

ox

����
aðtÞ
¼ 0 in ð0; T �; ð40bÞ

m
ou�

ox

����
bðtÞ
¼ ½bð/Þ �

�b�
ou
ox jbðtÞ

in ð0; T �; ð40cÞ

u�jt¼T ¼ 0 in ½að0Þ; bð0Þ�: ð40dÞ
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Finally, we remark that the same form of adjoint system (40) and expression for the gradient (39) is obtained
treating our problem as a shape optimization problem in an extended time–space domain ½0; T � � R and
employing standard methods of shape differentiation [20].

5. Discussion

In this Section we compare the two approaches to gradient computation introduced in Sections 3 and 4.
First we note that the two adjoint systems (16) and (40) provide equivalent gradient information (18) and
(39) which is due to the fact that they both correspond to the Gâteaux differential of the same cost functional
(5) with respect to the same control variable /. However, the structure of these adjoint systems is in fact quite
different. System (16) is defined on a fixed, time-independent, domain eX, and the evolution of the adjoint vari-
ables is constrained by two nonlocal conditions (16c) and (16d). On the other hand, system (40) is defined on a
time-dependent, albeit predetermined, domain XðtÞ and does not involve any nonlocal constraints. From the
point of view of numerical solution, it is more convenient to work with a problem defined in a fixed domain
such as eX. Therefore, using transformation (9) and defining �u�ðt; nÞ , u�ðt; xðt; nÞÞ we can now transform sys-
tem (40) to the fixed domain eX which yields
� o�u�

ot
þ o�u�

on
2 _x0 þ n _L

L
� 4m

L2

o2�u�

on2
¼ 0 in ð0; T � � ½�1; 1�; ð41aÞ

2m
L

o�u�

on

����
�1

¼ 0 in ð0; T �; ð41bÞ

2m
L

o�u�

on

����
1

¼ ½bð/Þ �
�b�

2
L

o~u
on j1

in ð0; T �; ð41cÞ

�u�jt¼T ¼ 0 in ½�1; 1�: ð41dÞ
We emphasize that the structure of this system is different, and arguably simpler, than the structure of system
(16) obtained by first transforming problem (3) to a fixed domain and then deriving the adjoint. This obser-
vation illustrates the fact that the operations of transforming a problem to a fixed domain and deriving the
adjoint do not, in general, commute. Since both adjoint problems contain the same gradient information,
in our computations in Section 6 we use the one with the simpler structure, namely, (41). The solutions of
the direct, perturbation and adjoint problems in the variable domain are computed by first transforming
(3), (33) and (40) to the fixed domain, solving the resulting fixed-domain systems, and then transforming
the solutions back to the variable domain. We stress that this is done for convenience only and is independent
of how the adjoint system is actually derived.

As regards the computational cost, in the 1D case it will be marginally smaller for system (41) than for sys-
tem (16) which is due to the simpler mathematical structure and fewer dependent variables in system (41).
Because of the same reason, implementation of system (41) is going to be more straightforward than in the
case of system (16). It appears that the computational advantages of the formulation based on the adjoint sys-
tem derived in the variable domain are going to be even more significant in the case of the spatial dimension
larger than one, since in such situations the computational cost of the approach based on a mapping of the
variable domain to a fixed domain will be increased by the cost of determining this mapping (transformation
W in Fig. 1). Indeed, while in the two-dimensional (2D) case such a transformation could possibly be found
using conformal mapping techniques, no such tools seem to be readily available in the three-dimensional (3D)
case. In contrast, such limitations do not exist in the approach in which the adjoint system is derived in the
variable domain, and in fact in [28] we apply this technique to a complicated problem in 3D.

6. Numerical examples

In this Section we provide numerical examples illustrating the concepts introduced above. For the sake of
clarity, we will use a rather simple approach to the numerical solution of problems (10) and (41) combining a
spectral collocation discretization in space with an explicit Euler discretization in time [21]. Given the smooth-
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ness of solutions and the high accuracy of the spectral discretization, accurate results can be obtained already
with very few grid points in space, and the time step restriction due to the explicit time discretization can be
easily accommodated. To fix attention, we consider the following values of the parameters: m ¼ 10�3, T ¼ 300,
w ¼ �2 with the initial condition ~u0ðnÞ ¼ �n2 þ 1. Unless stated otherwise, the results presented below were
obtained using N ¼ 10 grid points in space and the time step Dt ¼ 10�2. Analysis of the consistency of the gra-
dient calculation indicates that already at this spatial resolution the truncation errors become comparable to
round-off errors, so that using finer spatial resolution is unnecessary. An evolution of the solution u of prob-
lem (3) in space and time corresponding to the control /ðtÞ ¼ /0ðtÞ , 0:25þ 1:75ð1� t

TÞ is shown in Fig. 2a.
The control /0 will also serve as the initial guess for iterations (7). In our model optimization problem the
target trajectory of the right boundary �bðtÞ is given by a tabulated function (see Fig. 4d below). Cost functional
(5) is augmented with a Tikhonov-type regularization term, i.e., J 1ð/Þ , J ð/Þ þ J 0ð/Þ, where
J 0ð/Þ , l

R T
0 ð/� /0Þ

2 dt and we choose l ¼ 10�7. The solutions u0 and u� of the perturbation and adjoint
problems (33) and (40) corresponding to the initial guess /0 are shown in Fig. 2b and c. In Fig. 2d we show
the direct and adjoint transverse fields Z and f� at the boundaries aðtÞ and bðtÞ. While the adjoint transverse
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Fig. 2. Space–time evolution of (a) solution u of model system (3), (b) solution u0 of perturbation system (33) and (c) solution u� of adjoint
problem (37); dotted lines represent positive values and dashed lines represent negative values of the different solutions, figure (d) shows
the direct transverse fields Z (vanishing at t ¼ 0) and the adjoint transverse fields f� (vanishing at t ¼ T ) which are parts of the solutions of
problems (33) and (37); the transverse fields correspond to (solid line) x ¼ aðtÞ and (dotted line) x ¼ bðtÞ.
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field f� does not appear in final form (40) of the adjoint system, we show it here for completeness. To fix atten-
tion, in perturbation problem (33) the control perturbation was taken in the form /0ðtÞ ¼ A sinð2p t

TÞ, where
A > 0 is an arbitrary constant. We note that solutions of both the perturbation and adjoint problems evolve
in the domain XðtÞ obtained as a part of the solution of the original problem (3). As expected, the solution u0 of
perturbation problem (33) is concentrated close to the left boundary x ¼ aðtÞ, whereas the solution u� of
adjoint problem (37) is concentrated close to the right boundary x ¼ bðtÞ.

Next we proceed to analyze the consistency of the gradient rJ obtained using system (41). A standard test
[22] consists in computing the Gâteaux differential (i.e., the directional derivative) of the cost functional J ð/Þ
in some arbitrary direction /0 using relation (38) and comparing it to the result obtained with a forward finite-
difference formula. Thus, deviation of the quantity jð�Þ , J ð/þ�/0Þ�J ð/Þ

�ðrJ ;/0Þ from unity is a measure of the error. In
order to focus on the gradient computed using the adjoint system, in the cost functional here we do not include
the Tikhonov regularization term. Moreover, in order to exclude the interpolation errors, in these tests we also
set �b ¼ 1:0. In Fig. 3 we show the behavior of jð�Þ corresponding to / ¼ /0 and different time steps Dt
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Fig. 3. Measure of the error jð�Þ in determination of the cost functional gradient using adjoint system (41) for (a) different time steps
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(Fig. 3a), different numbers N of grid points in the spatial discretization (Fig. 3b) and different perturbations
/0ðtÞ ¼ sinðm2p t

TÞ (Fig. 3c), with the remaining parameters held fixed. As expected, all three Figures reveal an
increase of the error for large values of �, which is due to the truncations errors, and also for very small values
of �, which is due to the subtractive cancellation (round-off) errors. In Fig. 3a and b we observe that, as the
temporal and spatial discretizations are refined, jð�Þ approaches the unity for intermediate values of �. In
Fig. 3c we remark that, while the error increases for larger frequencies of the perturbation /0ðtÞ, in all cases
shown it remains small and close to 0:1%. We emphasize that, since we are using the ‘‘differentiate-then-dis-
cretize” rather than ‘‘discretize-then-differentiate” approach, the gradient should not be expected to be accu-
rate up to the machine precision [4]. Finally, we remark that the range of � where the values of jð�Þ are close to
the unity spans between four and five orders of magnitude.

Finally, we move on to discuss the results of optimization. As regards descent algorithm (7), we choose the
Polak-Ribiere version of the conjugate gradient method [3]. This is a popular approach to solution of uncon-
strained optimization problems and we refer the reader to [23] for an analysis of its convergence properties and
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Fig. 4. (a) Comparison of (dotted line) the L2 gradient rJ and (solid line) the Sobolev gradient rH1

J (vertical scale in the figure is
arbitrary), (b) decrease of the cost functional J 1 with the number n of iterations, (c) (dotted line) the initial guess for the control /0 and
(solid line) the optimal control /̂ as a function of time t and (d) (dotted line) the initial trajectory bð/0Þ, (dashed line) target trajectory �b
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trajectories close to the end of the time window.



B. Protas, W. Liao / Journal of Computational Physics 227 (2008) 2707–2723 2721
to [24] for a discussion of some new developments. We observe that repeated solution of problems (3) and (40)
followed in the optimization process by an update of the boundary conditions in (3) may exhibit the tendency
to amplify the high-frequency noise. Motivated by the work of Jameson [25,26], and also by our earlier inves-
tigations [27], we get around this difficulty by requiring that the gradients belong to the Sobolev space H 1ð0; T Þ
with the norm defined as kzkH1 ,

R T
0

z2 þ c2ðoz
ot Þ

2 dt which ensures smoothness of the descent directions (c is an
adjustable parameter which, unless otherwise stated, is fixed as c ¼ 1). The Sobolev gradient rH1

J is obtained
using (8) with X ¼ H 1ð0; T Þ, (38) and the definition of the H 1 inner product associated with the norm k � kH1 as
Z T

0

rH1

J/0 þ c2 orH1

J

ot
o/0

ot
dt ¼

Z T

0

mu�jaðtÞ/
0 dt ð42Þ
from which, after performing integration by parts and assuming homogeneous Dirichlet boundary conditions
for rH1

J at t ¼ 0 and t ¼ T , we obtain the smoothed gradient as a solution of the following Helmholtz
problem
1� c2 o2

ot2

� �
rH1

J ¼ mu�jaðtÞ; in ð0; T Þ

rH1

J jt¼0 ¼ rH1

J jt¼T ¼ 0:
ð43Þ
In Fig. 4a we compare the original L2 gradient rJ and the smoothed H 1 gradient rH1

J obtained at the fifth
iteration. In order to make the smoothing effect of (43) more visible, the Sobolev gradient shown in Fig. 4a was
computed using c ¼ 100. In Fig. 4b we present the cost functional J 1 as a function of the iteration count n. We
note a steady decrease of J 1 by almost three orders of magnitude during 25 iterations. In Fig. 4c we show the
initial guess /0ðtÞ for the control together with the optimal control /̂ðtÞ determined by the algorithm after 25
iterations, whereas in Fig. 4d we show the corresponding trajectories of the right boundary, i.e., bð/0Þ and
bð/̂Þ. In Fig. 4d we also include the target trajectory �b (see inset). Comparison of rather modest modifications
of b (Fig. 4d) with quite significant modifications of the corresponding control / (Fig. 4c) confirms a strongly
ill-posed character of the model problem investigated here.

7. Conclusions

In this investigation we addressed the problem of adjoint-based optimization of PDE systems defined in
variable domains. We showed that transformation of the PDE system from a variable to a fixed domain
and derivation of the adjoint do not commute. This means that, depending on the order of these operations,
different forms of the adjoint system may be obtained, even though they will contain the same gradient infor-
mation. In this sense, this problem is similar to the problem studied in [27] where we showed that, in general,
deriving adjoints does not commute with applying differential and integral operators. In such situations the
choice of the approach should be informed by the computational properties of the resulting adjoint system.
Problems such as (3), in which the actual PDE is formally linear and the nonlinearity arises through variability
of the domain, are said to possess a geometric nonlinearity. Thus, transformation of such problem to a fixed
domain can be regarded as replacing this geometric nonlinearity with an algebraic one. For the model problem
considered here, adjoint system (40) derived in the variable domain using methods of the noncylindrical cal-
culus clearly has structure more amenable to numerical implementation than adjoint system (16) derived in a
fixed domain. Furthermore, the approach in which the adjoint is derived in a fixed domain could be more
problematic due to difficulties in finding a transformation to the fixed domain which can be significant, espe-
cially in a higher spatial dimension. Our numerical results illustrate how gradients obtained with the adjoint
system derived on a variable domain can be used to solve a simple optimization problem. We reiterate that,
while the different PDE systems were solved numerically using a transformation to the fixed domain, this was
done for convenience only and was independent of how the adjoint system was actually derived. To the best of
our knowledge, the present investigation is the first actual computational study involving an adjoint system
derived using methods of the noncylindrical calculus. Work is underway employing such techniques in the
study of optimization of more complicated problems occurring in industrial welding. An adjoint system char-
acterizing sensitivity of such a problem described by equations representing the conservation of mass, momen-
tum and energy with a change of phase is derived in [28] using the approach presented in Section 4.
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Another issue relevant to computational optimization of PDE systems in variable domains in the ‘‘discret-
ize-then-optimize” framework is the potential for the use of automatic differentiation (AD). The AD approach
uses transformations of the original source code for the governing system to generate a code implementing the
perturbation (tangent linear) problem and the associated adjoint problem [29,30]. It is well known that for the
success of automatic differentiation, the original code must meet certain criteria as regards organization, clar-
ity of structure, interfaces, etc. While we are not aware of any systematic studies concerning this issue, we
expect that application of AD to free boundary problems might not be straightforward, since problems with
geometric nonlinearities are often implemented using operators and instructions which are difficult to differ-
entiate (e.g., if and goto). On the other hand, approaches involving mapping to a fixed domain in which
such geometric nonlinearities are replaced with algebraic ones can be more amenable to AD.

A natural generalization of the results presented here would be the development of an approach to com-
pute, for the given cost functional, the Hessian containing the second-derivative information. In addition
to quantifying the degree of ill-posedness of an optimization problem, this could also make it possible to apply
Newton’s method instead of gradient approach (7) to find the minimizer /̂. The Hessian of the cost functional
can be determined by solving a family of second-order adjoint problems [31]. Derivation and implementation
of such a second-order adjoint system for the present problem is an interesting question and we intend to
address it in our future research.
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